source: orange/docs/tutorial/rst/code/ensemble-forest.py @ 11052:c22077a09e63

Revision 11052:c22077a09e63, 447 bytes checked in by blaz <blaz.zupan@…>, 16 months ago (diff)

new tutorial

Line 
1import Orange
2
3data = Orange.data.Table("promoters")
4
5bayes = Orange.classification.bayes.NaiveLearner(name="bayes")
6knn = Orange.classification.knn.kNNLearner(name="knn")
7forest = Orange.ensemble.forest.RandomForestLearner(name="forest")
8
9learners = [forest, bayes, knn]
10res = Orange.evaluation.testing.cross_validation(learners, data, 5)
11print "\n".join(["%6s: %5.3f" % (l.name, r) for r, l in zip(Orange.evaluation.scoring.AUC(res), learners)])
Note: See TracBrowser for help on using the repository browser.