Changeset 9814:02100a7227b8 in orange


Ignore:
Timestamp:
02/06/12 19:32:47 (2 years ago)
Author:
tomazc <tomaz.curk@…>
Branch:
default
rebase_source:
3c9ea42bbcd9bb59a933261fe2c4e74612832085
Message:

Minor changes to Orange.feature.imputation.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • docs/reference/rst/Orange.feature.imputation.rst

    r9810 r9814  
    2727================= 
    2828 
    29 :obj:`ImputerConstructor` is the abstract root in the hierarchy of classes 
     29:obj:`ImputerConstructor` is the abstract root in a hierarchy of classes 
    3030that accept training data and construct an instance of a class derived from 
    3131:obj:`Imputer`. When an :obj:`Imputer` is called with an 
     
    4040 
    4141    Indicates whether to impute the class value. Defaults to True. 
    42  
    43     .. attribute:: deterministic 
    44  
    45     Indicates whether to initialize random by example's CRC. Defaults to False. 
    4642 
    4743Simple imputation 
     
    293289component. An example of such a class is 
    294290:obj:`~Orange.classification.logreg.LogRegLearner` with an attribute called 
    295 :obj:`~Orange.classification.logreg.LogRegLearner.imputerConstructor`. 
     291:obj:`~Orange.classification.logreg.LogRegLearner.imputer_constructor`. 
    296292 
    297293When given learning instances, 
    298294:obj:`~Orange.classification.logreg.LogRegLearner` will pass them to 
    299 :obj:`~Orange.classification.logreg.LogRegLearner.imputerConstructor` to get 
     295:obj:`~Orange.classification.logreg.LogRegLearner.imputer_constructor` to get 
    300296an imputer and used it to impute the missing values in the learning data. 
    301297Imputed data is then used by the actual learning algorithm. Also, when a 
     
    313309=============================== 
    314310 
    315 Imputation is used by learning algorithms and other methods that are not 
     311Imputation is also used by learning algorithms and other methods that are not 
    316312capable of handling unknown values. It imputes missing values, 
    317313calls the learner and, if imputation is also needed by the classifier, 
     
    330326For instance, :obj:`Orange.classification.logreg.LogRegLearner` has an 
    331327attribute 
    332 :obj:`Orange.classification.logreg.LogRegLearner.imputerConstructor`, and even 
    333 if you don't set it, it will do some imputation by default. 
     328:obj:`Orange.classification.logreg.LogRegLearner.imputer_constructor`, 
     329and even if you don't set it, it will do some imputation by default. 
    334330 
    335331.. class:: ImputeLearner 
     
    427423the instance's  dictionary. You are expected to call it like 
    428424:obj:`ImputeLearner(base_learner=<someLearner>, 
    429 imputer=<someImputerConstructor>)`. When the learner is called with examples, it 
     425imputer=<someImputerConstructor>)`. When the learner is called with 
     426examples, it 
    430427trains the imputer, imputes the data, induces a :obj:`base_classifier` by the 
    431428:obj:`base_cearner` and constructs :obj:`ImputeClassifier` that stores the 
Note: See TracChangeset for help on using the changeset viewer.