Ignore:
Timestamp:
02/27/12 23:21:32 (2 years ago)
Author:
janezd <janez.demsar@…>
Branch:
default
Children:
10389:8d7ba785b51c, 10394:962c24741ced
Message:

Moved documentation about regression.mean to rst and simplified it; minor fixes in classification.majority

File:
1 edited

Legend:

Unmodified
Added
Removed
  • Orange/regression/mean.py

    r10075 r10388  
    1 """ 
    2  
    3 **** 
    4 Mean 
    5 **** 
    6  
    7 .. index:: regression; mean 
    8  
    9  
    10 Accuracy of classifiers is often compared to the "default accuracy". 
    11 For regression, that is the accuracy of a classifier which predicts for 
    12 all instances the mean value of all observed class values in the 
    13 training data. To fit into the standard schema, even this algorithm 
    14 is provided in form of the usual learner-classifier pair. 
    15 Learning is done by :obj:`MeanLearner` and the classifier it 
    16 constructs is an instance of :obj:`ConstantClassifier`. 
    17  
    18 This is the regression counterpart of the 
    19 :obj:`Orange.classification.majority.MajorityLearner`, which can be 
    20 used for classification problems. 
    21  
    22 .. rubric:: Examples 
    23  
    24 This "learning algorithm" will most often be used to establish 
    25 whether some other learning algorithm is better than "nothing". 
    26 Here's a simple example. 
    27  
    28 :download:`mean-regression.py <code/mean-regression.py>`: 
    29  
    30 .. literalinclude:: code/mean-regression.py 
    31     :lines: 7- 
    32  
    33 """ 
    34  
    351from Orange.core import MajorityLearner as MeanLearner 
Note: See TracChangeset for help on using the changeset viewer.