Ignore:
Timestamp:
02/27/12 23:32:34 (2 years ago)
Author:
janezd <janez.demsar@…>
Branch:
default
Message:

Fixes in documentation about base regression learner

File:
1 edited

Legend:

Unmodified
Added
Removed
  • Orange/regression/base.py

    r10238 r10394  
    11"""\ 
    22==================================== 
    3 Basic regression learner (``basic``) 
     3Base regression learner (``basic``) 
    44==================================== 
    55 
     
    1414 
    1515class BaseRegressionLearner(Orange.core.Learner): 
    16     """ Base Regression Learner "learns" how to treat the discrete 
    17         variables and missing data. 
     16    """Fitting regressors typically requires data that has only 
     17    continuous-valued features and no missing values. This class 
     18    provides methods for appropriate transformation of the data and serves as a base class for various regressor classes. 
    1819    """ 
    1920 
     
    3536 
    3637    def set_imputer(self, imputer=None): 
    37         """ Sets the imputer for missing values. 
     38        """ Set the imputer for missing data. 
    3839 
    39         :param imputer: function which imputes the missing values, 
    40             if None, the default imputer: mean for the continuous variables 
    41             and most frequent value (majority) for discrete variables 
     40        :param imputer: function which constructs the imputer for the 
     41            missing values, if ``None``, the default imputer replaces 
     42            missing continuous data with the average of the 
     43            corresponding variable and missing discrete data with the 
     44            most frequent value. 
    4245        :type imputer: None or Orange.feature.imputation.ModelConstructor 
    4346        """ 
     
    5053 
    5154    def set_continuizer(self, continuizer=None): 
    52         """ Sets the continuizer of the discrete variables 
     55        """Set the continuizer of the discrete variables 
    5356 
    54         :param continuizer: function which replaces the categorical (dicrete) 
    55             variables with numerical variables. If None, the default continuizer 
    56             is used 
     57        :param continuizer: function which replaces the categorical 
     58            (dicrete) variables with numerical variables. If ``None``, 
     59            the default continuizer is used 
    5760        :type continuizer: None or Orange.data.continuization.DomainContinuizer 
    5861        """ 
     
    6568 
    6669    def impute_table(self, table): 
    67         """ Imputes missing values. 
    68         Returns a new :class:`Orange.data.Table` object 
     70        """Impute missing values and return a new 
     71        :class:`Orange.data.Table` object 
    6972 
    7073        :param table: data instances. 
     
    7780 
    7881    def continuize_table(self, table): 
    79         """ Continuizes the discrete variables. 
    80         Returns a new :class:`Orange.data.Table` object 
     82        """Replace discrete variables with continuous and return a new 
     83        instance of :class:`Orange.data.Table`. 
    8184 
    8285        :param table: data instances. 
Note: See TracChangeset for help on using the changeset viewer.