Ignore:
Timestamp:
04/03/12 07:25:08 (2 years ago)
Author:
blaz <blaz.zupan@…>
Branch:
default
Message:

Some cosmetics and renaming in Orange.feature.selection

File:
1 edited

Legend:

Unmodified
Added
Removed
  • docs/reference/rst/Orange.feature.selection.rst

    r10172 r10708  
    1010   single: feature; feature selection 
    1111 
    12 Feature selection module contains several functions for selecting features based on they scores. A typical example is the function :obj:`select_best_n` that returns the best n features: 
     12Feature selection module contains several utility functions for selecting features based on they scores normally 
     13obtained in classification or regression problems. A typical example is the function :obj:`select` 
     14that returns a subsets of highest-scored features features: 
    1315 
    14     .. literalinclude:: code/selection-best3.py 
    15         :lines: 7- 
     16.. literalinclude:: code/selection-best3.py 
     17    :lines: 7- 
    1618 
    17     The script outputs:: 
     19The script outputs:: 
    1820 
    19         Best 3 features: 
    20         physician-fee-freeze 
    21         el-salvador-aid 
    22         synfuels-corporation-cutback 
     21    Best 3 features: 
     22    physician-fee-freeze 
     23    el-salvador-aid 
     24    synfuels-corporation-cutback 
    2325 
    2426The module also includes a learner that incorporates feature subset 
     
    2931-------------------------------------- 
    3032 
    31 .. automethod:: Orange.feature.selection.best_n 
     33.. automethod:: Orange.feature.selection.top_rated 
    3234 
    3335.. automethod:: Orange.feature.selection.above_threshold 
    3436 
    35 .. automethod:: Orange.feature.selection.select_best_n 
     37.. automethod:: Orange.feature.selection.select 
    3638 
    3739.. automethod:: Orange.feature.selection.select_above_threshold 
     
    5658.. autoclass:: Orange.feature.selection.FilterAboveThreshold(data=None, measure=Orange.feature.scoring.Relief(k=20, m=50), threshold=0.0) 
    5759   :members: 
     60 
     61Below are few examples of utility of this class:: 
     62 
     63    >>> filter = Orange.feature.selection.FilterAboveThreshold(threshold=.15) 
     64    >>> new_data = filter(data) 
     65    >>> new_data = Orange.feature.selection.FilterAboveThreshold(data) 
     66    >>> new_data = Orange.feature.selection.FilterAboveThreshold(data, threshold=.1) 
     67    >>> new_data = Orange.feature.selection.FilterAboveThreshold(data, threshold=.1, \ 
     68        measure=Orange.feature.scoring.Gini()) 
    5869 
    5970.. autoclass:: Orange.feature.selection.FilterBestN(data=None, measure=Orange.feature.scoring.Relief(k=20, m=50), n=5) 
Note: See TracChangeset for help on using the changeset viewer.