Changeset 10397:229ea74dc7b5 in orange


Ignore:
Timestamp:
02/27/12 23:51:29 (2 years ago)
Author:
janezd <janez.demsar@…>
Branch:
default
Message:

Added module names to toc entries for statistics.*

Location:
docs/reference/rst
Files:
3 edited

Legend:

Unmodified
Added
Removed
  • docs/reference/rst/Orange.statistics.basic.rst

    r9372 r10397  
    1 .. automodule:: Orange.statistics.basic 
     1.. py:currentmodule:: Orange.statistics.basic 
     2 
     3.. index:: Basic Statistics for Continuous Features 
     4 
     5==================================================== 
     6Basic Statistics for Continuous Features (``basic``) 
     7==================================================== 
     8 
     9The are two simple classes for computing basic statistics 
     10for continuous features, such as their minimal and maximal value 
     11or average: :class:`Orange.statistics.basic.Variable` holds the statistics for a single variable 
     12and :class:`Orange.statistics.basic.Domain` behaves like a list of instances of 
     13the above class for all variables in the domain. 
     14 
     15.. class:: Variable 
     16 
     17    Computes and stores minimal, maximal, average and 
     18    standard deviation of a variable. It does not include the median or any 
     19    other statistics that can be computed on the fly, without remembering the 
     20    data; such statistics can be obtained classes from module :obj:`Orange.statistics.distribution`. 
     21 
     22    Instances of this class are seldom constructed manually; they are more often 
     23    returned by :obj:`Domain` described below. 
     24 
     25    .. attribute:: variable 
     26     
     27        The variable to which the data applies. 
     28 
     29    .. attribute:: min 
     30 
     31        Minimal value encountered 
     32 
     33    .. attribute:: max 
     34 
     35        Maximal value encountered 
     36 
     37    .. attribute:: avg 
     38 
     39        Average value 
     40 
     41    .. attribute:: dev 
     42 
     43        Standard deviation 
     44 
     45    .. attribute:: n 
     46 
     47        Number of instances for which the value was defined. 
     48        If instances were weighted, :obj:`n` holds the sum of weights 
     49         
     50    .. attribute:: sum 
     51 
     52        Weighted sum of values 
     53 
     54    .. attribute:: sum2 
     55 
     56        Weighted sum of squared values 
     57 
     58    .. 
     59        .. attribute:: holdRecomputation 
     60     
     61            Holds recomputation of the average and standard deviation. 
     62 
     63    .. method:: add(value[, weight=1]) 
     64     
     65        Add a value to the statistics: adjust :obj:`min` and :obj:`max` if 
     66        necessary, increase :obj:`n` and recompute :obj:`sum`, :obj:`sum2`, 
     67        :obj:`avg` and :obj:`dev`. 
     68 
     69        :param value: Value to be added to the statistics 
     70        :type value: float 
     71        :param weight: Weight assigned to the value 
     72        :type weight: float 
     73 
     74    .. 
     75        .. method:: recompute() 
     76 
     77            Recompute the average and deviation. 
     78 
     79.. class:: Domain 
     80 
     81    ``statistics.basic.Domain`` behaves like an ordinary list, except that its 
     82    elements can also be indexed by variable names or descriptors. 
     83 
     84    .. method:: __init__(data[, weight=None]) 
     85 
     86        Compute the statistics for all continuous variables in the data, and put 
     87        :obj:`None` to the places corresponding to variables of other types. 
     88 
     89        :param data: A table of instances 
     90        :type data: Orange.data.Table 
     91        :param weight: The id of the meta-attribute with weights 
     92        :type weight: `int` or none 
     93         
     94    .. method:: purge() 
     95     
     96        Remove the :obj:`None`'s corresponding to non-continuous features; this 
     97        truncates the list, so the indices do not respond to indices of 
     98        variables in the domain. 
     99     
     100    part of :download:`distributions-basic-stat.py <code/distributions-basic-stat.py>` 
     101     
     102    .. literalinclude:: code/distributions-basic-stat.py 
     103        :lines: 1-10 
     104 
     105    Output:: 
     106 
     107             feature   min   max   avg 
     108        sepal length 4.300 7.900 5.843 
     109         sepal width 2.000 4.400 3.054 
     110        petal length 1.000 6.900 3.759 
     111         petal width 0.100 2.500 1.199 
     112 
     113 
     114    part of :download:`distributions-basic-stat.py <code/distributions-basic-stat.py>` 
     115     
     116    .. literalinclude:: code/distributions-basic-stat.py 
     117        :lines: 11- 
     118 
     119    Output:: 
     120 
     121        5.84333467484  
  • docs/reference/rst/Orange.statistics.contingency.rst

    r10246 r10397  
    1 .. py:currentmodule::Orange.statistics.contingency 
     1.. py:currentmodule:: Orange.statistics.contingency 
    22 
    33.. index:: Contingency table 
    44 
    5 ================= 
    6 Contingency table 
    7 ================= 
     5=================================== 
     6Contingency table (``contingency``) 
     7=================================== 
    88 
    99Contingency table contains conditional distributions. Unless explicitly 
  • docs/reference/rst/Orange.statistics.distribution.rst

    r10372 r10397  
    33.. index:: Distributions 
    44 
    5 ============= 
    6 Distributions 
    7 ============= 
     5================================ 
     6Distributions (``distribution``) 
     7================================ 
    88 
    99:obj:`Distribution` and derived classes store empirical 
Note: See TracChangeset for help on using the changeset viewer.