Changeset 7606:8053c45b7426 in orange


Ignore:
Timestamp:
02/05/11 01:06:05 (3 years ago)
Author:
miha <miha.stajdohar@…>
Branch:
default
Convert:
dec30b4984186918dc2de4412e4106c0da521e39
Message:

fixed text width

File:
1 edited

Legend:

Unmodified
Added
Removed
  • orange/Orange/classification/svm/__init__.py

    r7597 r7606  
    77*********************** 
    88 
    9 A collection of classes that wrap the  
    10 `LibSVM library <http://www.csie.ntu.edu.tw/~cjlin/libsvm/>`_, a library for  
    11 `support vector machines <http://en.wikipedia.org/wiki/Support_vector_machine>`_ (SVM). 
    12 In this way SVM learners from LibSVM behave like ordinary Orange learners and can 
    13 be used as Python objects in training, classification and evaluation tasks. The 
     9A collection of classes that wrap the `LibSVM library 
     10<http://www.csie.ntu.edu.tw/~cjlin/libsvm/>`_, a library for `support vector 
     11machines <http://en.wikipedia.org/wiki/Support_vector_machine>`_ (SVM). In this 
     12way SVM learners from LibSVM behave like ordinary Orange learners and can be 
     13used as Python objects in training, classification and evaluation tasks. The 
    1414implementation supports the implementation of Python-based kernels, that can be 
    1515plugged-in into LibSVM implementations. 
    1616 
    17 .. note:: On some data-sets SVM can perform very poorly. SVM can be very  
    18           sensitive to the proper choice of the parameters. If you are having  
    19           problems with the learner's accuracy try scaling the 
    20           data and using different parameters or choose an easier approach 
    21           and use the :obj:`SVMLearnerEasy` class which does this automatically 
    22           (it is similar to the `svm-easy.py`_ script in the LibSVM distribution). 
     17.. note:: On some data-sets SVM can perform very poorly. SVM can be very 
     18          sensitive to the proper choice of the parameters. If you are having 
     19          problems with the learner's accuracy try scaling the data and using 
     20          different parameters or choose an easier approach and use the 
     21          :obj:`SVMLearnerEasy` class which does this automatically (it is 
     22          similar to the `svm-easy.py`_ script in the LibSVM distribution). 
    2323           
    2424SVM learners 
     
    400400class SVMLearnerEasy(SVMLearner): 
    401401     
    402     """Same as :obj:`SVMLearner` except that it will automatically scale the data 
    403     and perform parameter optimization using the :obj:`tuneParameters` method 
    404     similar to the easy.py script in LibSVM package. Use this if the 
    405     SVMLearner performs badly.  
     402    """Same as :obj:`SVMLearner` except that it will automatically scale the  
     403    data and perform parameter optimization using the :obj:`tuneParameters` 
     404    method similar to the easy.py script in LibSVM package. Use this if the 
     405    SVMLearner performs badly. 
    406406     
    407407    Example (`svm-easy.py`_ uses: `vehicle.tab`_) 
Note: See TracChangeset for help on using the changeset viewer.