Ignore:
Timestamp:
02/07/12 11:29:21 (2 years ago)
Author:
anze <anze.staric@…>
Branch:
default
rebase_source:
db65f345b1af5b485bea743e63619c6a6d4753f5
Message:

Fixed rst errors.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • docs/reference/rst/Orange.evaluation.scoring.rst

    r9892 r9904  
    114114   data set, we would compute the matrix like this:: 
    115115 
    116       cm = Orange.evaluation.scoring.confusion_matrices(resVeh, \ 
    117 vehicle.domain.classVar.values.index("van")) 
     116      cm = Orange.evaluation.scoring.confusion_matrices(resVeh, vehicle.domain.classVar.values.index("van")) 
    118117 
    119118   and get the results like these:: 
     
    177176   classes, you can also compute the 
    178177   `sensitivity <http://en.wikipedia.org/wiki/Sensitivity_(tests)>`_ 
    179    [TP/(TP+FN)], `specificity \ 
    180 <http://en.wikipedia.org/wiki/Specificity_%28tests%29>`_ 
    181    [TN/(TN+FP)], `positive predictive value \ 
    182 <http://en.wikipedia.org/wiki/Positive_predictive_value>`_ 
    183    [TP/(TP+FP)] and `negative predictive value \ 
    184 <http://en.wikipedia.org/wiki/Negative_predictive_value>`_ [TN/(TN+FN)]. 
     178   [TP/(TP+FN)], `specificity <http://en.wikipedia.org/wiki/Specificity_%28tests%29>`_ 
     179   [TN/(TN+FP)], `positive predictive value <http://en.wikipedia.org/wiki/Positive_predictive_value>`_ 
     180   [TP/(TP+FP)] and `negative predictive value <http://en.wikipedia.org/wiki/Negative_predictive_value>`_ [TN/(TN+FN)]. 
    185181   In information retrieval, positive predictive value is called precision 
    186182   (the ratio of the number of relevant records retrieved to the total number 
     
    195191   as F1 [2*precision*recall/(precision+recall)] or, for a general case, 
    196192   Falpha [(1+alpha)*precision*recall / (alpha*precision + recall)]. 
    197    The `Matthews correlation coefficient \ 
    198 <http://en.wikipedia.org/wiki/Matthews_correlation_coefficient>`_ 
     193   The `Matthews correlation coefficient <http://en.wikipedia.org/wiki/Matthews_correlation_coefficient>`_ 
    199194   in essence a correlation coefficient between 
    200195   the observed and predicted binary classifications; it returns a value 
Note: See TracChangeset for help on using the changeset viewer.